sic
sic
aic(model::Union{VAR,SVAR}) -> Real
aic(Sigma_u::Matrix{<:Number}, num_coeffs::Int, T::Int) -> Real
bic(model::Union{VAR,SVAR}) -> Real
bic(Sigma_u::Matrix{<:Number}, num_coeffs::Int, T::Int) -> Real
sic(model::Union{VAR,SVAR}) -> Real
sic(Sigma_u::Matrix{<:Number}, num_coeffs::Int, T::Int) -> Real
hqc(model::Union{VAR,SVAR}) -> Real
hqc(Sigma_u::Matrix{<:Number}, num_coeffs::Int, T::Int) -> Real
Computes information criteria for model selection in VARs.
Given a fitted VAR
model or directly the covariance matrix Sigma_u
, the number of estimated coefficients, and sample size T
, each function returns the respective criterion value:
- AIC (Akaike Information Criterion):
\[ \text{AIC} = \log\det(\Sigma_u) + \frac{2k}{T} \]
- SIC/BIC (Schwarz/Bayesian Information Criterion):
\[ \text{SIC} = \log\det(\Sigma_u) + \frac{\log(T) k}{T} \]
- HQC (Hannan-Quinn Criterion):
\[ \text{HQC} = \log\det(\Sigma_u) + \frac{2 \log(\log T) k}{T} \]
Here, \(k\) is the number of estimated parameters and \(T\) is the effective sample size.
Arguments
model::VAR
: A fitted VAR modelSigma_u::Matrix{<:Number}
: Residual covariance matrixnum_coeffs::Int
: Number of estimated coefficientsT::Int
: Number of observations used in estimation